KINLONG
  • Home
  • Profiles ▼
  • Communities ▼
  • Apps ▼
  • Metrics
  • Moderation
首页
  • ▼
  • Log In
  • Share
  • ?
  • IBMIBM

Blogs

  • My Blogs
  • Public Blogs
  • My Updates
  • Administration
  • Log in to participate

▼ Tags

 

▼ Archive

  • January 2022
  • December 2021
  • November 2021
  • October 2021
  • September 2021
  • August 2021
  • July 2021
  • June 2021
  • May 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019
  • May 2019
  • April 2019
  • March 2019

▼ Blog Authors

风

View All Entries
Clicking the button causes a full page refresh. The user could go to the "Entry list" region to view the new content.) Entry list

我国如何核算季度GDP?

张卉 eb041740-b761-1036-8c1c-ef16cba5f6da | ‎ | 137 Views

    

  答:我国季度GDP核算是采取分行业核算的方式,即先核算《国民经济行业分类》中各行业的季度现价增加值和不变价增加值,再分别加总得到季度现价GDP和不变价GDP。在核算分行业增加值时,各个行业会根据自身行业的特点采取不同的平减指数,如工业采用PPI作为平减指数,一些服务业采取对应的CPI作为平减指数等等。除此之外,根据基础资料的来源不同,各个行业具体的核算方法也有所不同,如指数外推法,价格指数推算法等等,具体核算方法可以参考每季度发布的季度核算说明。

 

  在得到当季和上年同期的现价GDP和不变价GDP后即可计算GDP平减指数:GDP平减指数=GDP现价发展速度/GDP不变价发展速度*100=(当季现价GDP/上年同期现价GDP)/(当季不变价GDP/上年同期不变价GDP)* 100

 

  其中:

 

  现价GDP=Σ各行业现价增加值

 

  不变价GDP=Σ各行业不变价增加值

 

  每个行业现价增加值、不变价增加值和该行业平减指数满足下述关系:

 

  现价增加值发展速度=不变价增加值发展速度*平减指数/100

 

  当期现价增加值/上年同期现价增加值= (当期不变价增加值/上年同期不变价增加值)*平减指数/100

  • Add a Comment Add a Comment
  • Edit
  • More Actions v
  • Quarantine this Entry
Notify Other People
notification

Send Email Notification

+

Quarantine this entry

deleteEntry
duplicateEntry

Mark as Duplicate

  • Previous Entry
  • Main
  • Next Entry
Feed for Blog Entries | Feed for Blog Comments | Feed for Comments for this Entry
  • Home
  • Help
  • IBM Support Forums
  • Bookmarking Tools
  • Server Metrics
  • Mobile UI
  • About
  • IBM Connections on ibm.com
  • Submit Feedback