海盗分金币问题
在一座座荒岛上,有5个强盗掘出了100块非常珍贵的金币。他们商定了一个分配金币的规则:首先抽签决定每个人的次序,排列成强盗一至五。然后由强盗一先提出分配方案,经5人表决,如多数人同意,方案就被通过,否则强盗一将被扔入大海喂鲨鱼。如果强盗一被扔入大海,就由强盗二接着提出分配方案,如多数人同意方案就被通过,否则强盗二也要被扔入大海。以下依次类推。假定每个强盗都足够聪明,都能做出理性的选择,那么,强盗一提出什么样的分配方案,能够使自己得到最大的收益?
对于这个问题要采用方向推导方法:
如果1至3号强盗都喂了鲨鱼,只剩4号和5号的话,5号一定投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号惟有支持3号才能保命。
3号知道这一点,就会提出“100,0,0”的分配方案,对4号、5号一毛不拔而将全部金币归为已有,因为他知道4号一无所获但还是会投赞成票,再加上自己一票,他的方案即可通过。不过,2号推知3号的方案,就会提出“98,0,1,1”的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望他出局而由3号来分配。这样,2号将拿走98枚金币。同样,2号的方案也会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。这无疑是1号能够获取最大收益的方案了!答案是:1号强盗分给3号1枚金币,分给4号或5号强盗2枚,自己独得97枚。分配方案可写成(97,0,1,2,0)或(97,0,1,0,2)。1号看起来最有可能喂鲨鱼,但他牢牢地把握住先发优势,结果不但消除了死亡威胁,还收益最大。而5号,看起来最安全,没有死亡的威胁,甚至还能坐收渔人之利,却因不得不看别人脸色行事而只能分得一小杯羹。在“海盗分金”中,任何“分配者”想让自己的方案获得通过的关键是,事先考虑清楚“挑战者”的分配方案是什么,并用最小的代价获取最大收益,拉拢“挑战者”分配方案中最不得意的人们。